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Phase space functions and correspondence rules 
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Denmark 
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Abstract. It is shown that positive quantum joint distributions in phase space lead to 
quantum mechanical operators depending on the state to be considered. It is also shown 
that a simple requirement of canonical invariance leads to the Weyl correspondence rule 
as the only allowed one. 

1. Introduction 

Quantum mechanics can be described in several mathematical forms of which the 
method of distribution functions in phase space most easily illustrates the connections 
between quantum mechanics and classical mechanics. 

Contrary to the methods of wavefunctions in either coordinate or momentum 
space the phase space method here presented does not use quantum mechanical 
operators but ordinary classical functions. The correspondence rule between classical 
mechanics and quantum mechanics is, so to say, built-in in the phase space function, 
i.e. starting from a fixed correspondence rule one is led to a definite choice of phase 
space functions, or vice versa. 

The Wigner distribution function is the starting point of 8 2 of this paper. Some 
of its well known properties will be reviewed and it will be shown how a generalisation 
leads to other phase space functions. 

Firstly, in § 3, we consider the phase space functions of Cohen (1980) for a particular 
state and show that they correspond to the definition of operators depending on the 
actual state. This is not common practice. 

In § 4 we reconsider the general phase space functions of 0 2 and demonstrate 
how a simple requirement of canonical invariance of the operators leads to the Wigner 
function as the only allowed phase space function. This result is in agreement with 
and a generalisation of a result obtained by Kruger and Poffyn (1976). Also Fairlie 
(1964) claims that the Wigner function is the phase space function to be used. But 
his proof does not seem completely convincing, since he postulates that an identity 
between two integrals taken all over the two-dimensional space also should be valid 
pointwise. 

t Present address: Max-Planck-Institut fur Festkorperforschung, D 7000 Stuttgart 80, Federal Republic of 
Germany. 
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2. The Wigner function and generalisations of it 

For a state Is), represented in coordinate representation by the wavefunction (L(q) 
and in momentum representation by ~ $ ( p ) ,  Wigner (1932) introduced the phase space 
function Fw(q, p )  that nowadays bears his name. It plays the role of a quasi-probability 
distribution in phase space since 

J J 

where the integrations everywhere in this paper are to be taken from -CO to +CO. 

The prefix ‘quasi’ indicates that Fw(q, p )  may take negative values locally. 
Furthermore, as was shown by Groenewold (1946), the expectation value of the 

quantum mechanical operator d can be found by means of the classical counterpart 
A (4, p )  and the phase space function 

when the correspondence rule between the quantum mechanical operator and the 
classical function is the Weyl correspondence rule (Weyl 1931). 

It is now a simple matter to generalise (2) to other correspondence rules by the 
introduction of other phase space functions. Hence we will here consider the following 
set of phase space functions which all satisfy (1): 

where f(e,7) is any function satisfying 

f(o,  =f(e, 0) = 1. (4) 

Fw(q, p )  is obtained by setting f(0, T )  = 1. 
Using (2) it is possible to find the correspondence rule between the operator A 

and the function A for an arbitrary f. The function f is shown in table 1 for different 
well known correspondence rules (Esstn 1978, Kruger and Poffyn 1976, Mehta 1964, 
Rivier 1951, Wolf 1975). 

When f(0, T )  is independent of @ ( q )  it can be shown (Wigner 1971) that in general 
F(q, p )  is not non-negative. Therefore Cohen (1980) allowed f ( 0 ,  T )  to depend on the 

Table 1. The function f(0, T )  for some well known correspondence rules. 

Correspondence rule f(e, T )  

Weyl 1 
Normal exp[(e2 + T 2 ) / 4 ]  

Antinormal exp[-(e2 + T 2 ) / 4 ]  

Standard exp(i0~/2) 
Antistandard exp(-i&/2) 
Born-Jordan sin(;eT)/(teT) 
Rivier COS($&) 
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state to be considered and thereby introduced non-negative phase space functions, 
but as we shall see in the following section this leads to quantum mechanical operators 
also dependent on the state. 

3. A state independence 

By requiring that the correspondence between classical functions and quantum 
mechanical operators be linear and that the zero operator correspond to the number 
zero, one obtains 

where the set of operators d (4, p )  describes the actual correspondence rule. It is then 
immediately found that 

is equal to 

The phase space function can be found from (3), and since the identity between 
(6) and (7) is to hold for any function A(q, p ) ,  we obtain 

X$*(q1)4(42) dqi dq2 de. (8) 

This is to be true for all wavefunctions $(q1), thereby giving 

xf(@, q2 -41)4(q2) dq2 de. (9) 
Comparing (5) and (9),  we see that it is possible in a very simple way to find an 

expression for any operator in the coordinate representation. We will here consider 
a particular set of operators, namely the operators q m p "  where m and n are positive 
integers. 

Multiplying (9) with 4 p  followed by an integration over q and p yields after some 
manipulations 

n 



538 MSpringborg 

where we have assumed that f can be Taylor expanded, 

n 
In general the operator q m p "  can be written as 

where the dots denote terms containing expansion coefficients fkl, k s m, 1 s n, ( k ,  I )  # 

(m, n ) .  
BecauseJlf_(4) and (11) we are finally led to the conclusion that if we demand the 

operators q m p "  to be independent of the state to be considered-which seems quite 
natural-the function f(e, T )  must be independent of the state too. This is not the 
case for the positive quantum joint distributions defined by Cohen (1980). 

4. A simple canonical invariance 

We now go back to the general case (3) without demanding anything but (4) to be 
fulfilled for the function f(e, T ) .  Introducing the eigenstates of the ij operator 

dlqd = 411qd, 

(3) can be rewritten as 

x ( u  -q  + q ' - u j s )  ei6 'c-q)f(e,  2q -2q') de  dq 'du du dx. (14) 

The identity operator 

1 = 5 lq")(qf'l dq" (15)  

can be applied in obtaining 



Phase space functions and correspondence rules 539 

(16) can be transformed into 

The operator identity (Eriksen 1968, Wilcox 1967) 

and some manipulations finally transform (18) into 

x (4'1 ei(""'""'is) eieVf(f3, 2q - 2q') de dq' du dv dx. (20) 

A procedure similar to the one applied in § 3 can be used to obtain the operator 
corresponding to an arbitrary classical function A(q, p ) .  But first we Fourier transform 
A h ,  P )  

A(q, p )  = (2r)- '  11 a(s, t )  ei(rqcrp) ds dt. 

Inserting (20) and (21) into (15) gives then immediately that the operator A corre- 
sponding to A(q, p )  is given by 

x eie(r-u)f(B, 2q -2q')a(s, t )  dB dq' du dx dq ds dt. (22) 

A classical canonical transformation will transform the function A(q, p )  into a new 
function depending on the new coordinate and momentum, Al(Q, P) which is identical 
with the original one in the sense that A1(Q(q, p ) ,  P(q, p ) )  = A(q, p ) .  Also the operator 
is transformed when the canonical transformation is applied. But, since the two classical 
functions are identical, it seems natural to demand the two corresponding operators 
to be identical too. We will here show that this restriction used on a very simple 
canonical transformation is sufficient to leave us with the Weyl correspondence rule 
as the only allowed one. 

Out of the set of linear unimodular canonical transformations 

q + Q = aq + P p  

p -b P = sq + yp  
a y - p a  = 1 

which corresponds to the operator transformations 

q^ -b 8 = aq̂  +pp* fi -P B = aq̂  + yfi 

we choose the very simple one 

a = 6 = 0  p = -y  = 1. 
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The classical function is transformed into 

= (2+' 

which is to be identical with (21 

a1(s, t )  = a(-t,  s). 

giving 

The operator A is similarly transformed into 

( q ~ /  ei(x4+udi  ei8(-s+x) f(e, 2q -2q'ja(s, t j  de  dq 'du  dx dq ds dt. (28) 

Since the two classical functions are identical we now also demand that the two 
operators are identical. But this identity is to hold for all possible functions a(s, 1) .  
Accordingly 

x ei'(r-ulf(O, 2q - 2q') de  dq' du dx dq 

x e'"-"'"' f(@, 2q - 2q') de dq' du dx dq (29) 

for all (s, t ) .  
This is the fundamental identity which we now will show leads to the Weyl 

correspondence rule as the only allowed one. We multiply from the left with the 
arbitrarily chosen eigenstate (401, use the orthonormality of the eigenstates, and use 
(21) in deriving 

exp[i(-xq -xt/2+sq +xqo-xt+2xuj](qo-t+u~ e iud e i t7 ( t -u )  1/11 
= [jjj exp[i(-uq +us /2+tq  - x 2 + x q o + x s ) ] ( q ~ + s  - X I  eiuP eie(-s+x) 

Since s, t ,  and 40 can be chosen arbitrarily, we choose 
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yielding 

1111 exp[i(-xq -xq0/2-qqO+2xu)](uI eiua eie(q0-U)f(8, 2q-2u)  de  du dx dq 

xf(O,2q+2x)di3dudxdq.  (32) 

We multiply from the right with the eigenstate of the p̂  operator Ipo)  and since 

( U  Ipd CC exp(iupd (33) 

we obtain after some manipulations 

J J exp[2ix (qo - po)lf(o, qO - 2x1 eiex dx de 

= [ [ exp{i[x (2q0 - P O )  - x’llf (e, 2p0 - 3q0 + 2x) eiex dx de. (34) 
J J  

The arbitrary p o  is chosen: 

p o = o  

which leads to 

11 eZixqof(6, 40-2x) eiex dx de = 11 eZixqOf(O +x, -3qO+2x) eiex dx 

The identity theorem for Fourier transforms yields then firstly 

1 eZixqof(@, qo-2x) dx = eZixqof(@ +x, -3q0+2x) dx I 
and secondly 

f ( e ,  qo - 2x1 = f ( e  + X, -3qo + 2 4 .  

m, 7 )  =m 0 )  = 1 

Since this is true for all (e, x, qo) we finally end up with 

for all (e, 7 ) .  

This finishes the proof and shows, as we have already mentioned, that the Weyl 
correspondence possesses a canonical invariance property that is not possessed by 
any other correspondence rule. Finally, returning to (22), with f(0, T )  determined by 
(39), the Weyl correspondence is found in the well known form 

ei(s4 +r6)  A = ( 2 ~ ) - I  a(s, t )  ds dt. 

This form is easily seen to be invariant under any of the transformations (23)-(24). 
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5. Conclusion 

It has been shown, as was also found by Kruger and Poffyn (1976), that the Weyl 
correspondence rule has some special properties that allow one to call this the ‘best’ 
correspondence rule. Accordingly one should use Wigner’s phase space function 
whenever phase space functions are required. 

It should here be pointed out that a completely different approach can be reached 
by considering the inversion operators fi(q, p )  in phase space (Royer 1977, Grossmann 
1976, Dahl 1982a, b). It turns out that the Wigner distribution function can be written 
as 

Fw(q,p) = .rr-l(slfi(q,p)ls). (41) 

Accordingly Fw(q, p )  describes how a state is distributed around a particular phase 
space point. This interpretation, which is not possible for other phase space functions, 
gives us a picture where it is meaningful that the phase space function is both positive 
and negative. 

Hence, independent of using phase space functions or correspondence rules as the 
starting point, we are left with the Weyl-Wigner formalism as the ‘best’ one. 
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